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Temporal association in neural networks at finite temperatures

M. Y. Choi, Jihyun Choi,* and Kibeom Park
Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

~Received 6 July 1998!

Temporal association in neural networks, which retrieves time sequences of stored patterns, is made possible
by introducing asymmetry in the synaptic coupling. Such temporal association in the asymmetric Hopfield
model is first considered, with particular attention to the finite-temperature effects on the retrieval capability.
We then turn to the dynamic model, which is the main topic of this paper, and investigate its temporal
association properties both analytically and numerically. The phase diagram is obtained in the three-
dimensional parameter space, and its structure is discussed according to the storage and other parameter values.
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I. INTRODUCTION

The study of the thermodynamic properties of neural n
works has focused mostly on the systems with symme
couplings@1–3#, which makes the dynamics of the netwo
relatively simple. The system relaxes to the states which
local minima of a global energy function and remains sta
at low temperatures. Thus symmetric networks cannot p
vide temporal association, which retrieves a sequence of em
bedded patterns successively. Such a capability of reca
temporal sequences or cycles of patterns can be endowe
introducing asymmetric couplings in the network, whi
may prevent the system from approaching a stable attra
in the configurational space@4–8#. Note that the synaptic
connections in real biological systems indeed have a h
degree of asymmetry. It is also natural to allow time delay
the asymmetric part of the synaptic coupling@9#: It is desir-
able to have a controlled set of transitions in such a way
the system stays in one state for a finite period of time a
which a transition is made to the next quasiequilibrium st
in the sequence. Without the time delay, the system wo
make transitions among quasiequilibrium states at once.

In the Hopfield-type neural networks, the desired featu
of temporal association have been successfully demonstr
with the asymmetric coupling@4#; the important role played
by the transmission delay has also been observed. Howe
the study is restricted to the low-loading and ze
temperature limit, and the behavior at finite storage and fi
temperatures has not been investigated. Furthermore, th
tally asynchronous character of the dynamics in the Hopfi
model does not describe the real biological situation v
well. On the other hand, the dynamic model proposed by
of us @10# deals with usual continuous time rather than di
tal and takes into account the existence of relevant t
scales in the nervous system such as the refractory pe
time duration of the action potential, and retardation of
signal propagation. In particular, the dynamic model p
sesses time delay inherently, and is apparently adequat
studying temporal association.

In this paper, we study both analytically and numerica
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temporal association in the Hopfield model and in the d
namic model, with emphasis on the effects of finite stora
and temperatures. In the Hopfield model the phase diag
is obtained in the plane of the temperature and the degre
asymmetry, for various storage values. The dynamic mo
is also made capable of temporal association by introduc
asymmetric couplings in a similar way to the Hopfie
model. In addition to the temperature and the degree
asymmetry, there exists one more parameter of relevanc
the dynamic model—the ratio of the refractory period to t
action potential duration. The corresponding phase diag
in the three-dimensional parameter space is obtained via
bility analysis and compared with the results of numeri
simulations.

This paper is organized as follows. In Sec. II, we intr
duce temporal association in the asymmetric Hopfield mo
and study numerically its properties at finite temperatu
and finite storage capacity. The phase diagram is obtaine
the plane of the temperature and the degree of asymm
Section III is devoted to the investigation of the tempo
association in the dynamic model, presenting the main
sults of this paper. We first derive analytic phase bounda
by means of stability analysis, and also perform numeri
simulations to obtain the phase diagram. The two phase
grams, obtained via stability analysis and from numeri
simulations, are drawn in the three-dimensional param
space, and found to display good agreement with each o
Finally, a brief summary is given in Sec. IV.

II. ASYMMETRIC HOPFIELD MODEL

We follow Ref.@4# and consider a network ofN two-state
neurons, where the state of thei th neuron is described by th
variablesi(561). Temporal association is accomplished
introducing two kinds of synaptic couplings as well as a tim
constantt characterizing the dynamic memory. Synapses
the first kind are symmetric, given by Hebb’s rule

Ji j
S5

1

N (
m51

p

j i
mj j

m ~ iÞ j ! ~1!

for p stored patterns$j i
m%, as in the standard Hopfield mode

those of the second kind are asymmetric, taken in the fo
of
7761 © 1998 The American Physical Society
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Ji j
A5

l

N (
m51

q

j i
m11j j

m ~ i 5” j !, ~2!

which defines the order among theq(<p) patterns. The rela-
tive strengthl of the asymmetric part controls the degree
asymmetry, and cycles can be incorporated by settingj i

q11

5j i
1 in Eq. ~2!. At zero temperature, i.e., in the absence

stochastic noise, the system evolves in time as follows:
state of the~randomly chosen! i th neuron is updated in suc
a way that si has the same sign as the local fieldhi
[( j Ji j sj . The local field consists of the two contribution

hi5(
j 51

N

Ji j
Ssj1(

j 51

N

Ji j
As̄j ~3!

with

s̄j[E
0

t

dt8wt~ t2t8!sj8 ,

wheresj8 represents the state of thej th neuron at timet8.
Here wt(t) denotes the dynamic memory characterized
the time-delay constantt. It is non-negative and normalize
to be *0

`dtwt(t)51. The effects of noise can be taken in
account by updating thei th neuron probabilistically.
Namely, the valuesi511 is assigned according to the pro
ability 221(11tanhbhi), where the ‘‘temperature’’T[b21

measures the noise strength@2#; this is essentially the stan
dard Monte Carlo process.

The analysis of the emergent dynamic features of the
work becomes particularly simple in the limitN→` with
finite p. In this zero-storage case (a[p/N→0) the local
field takes the form

hi5 (
n51

p

j i
nmn1l (

n51

q

j i
n11m̄n , ~4!

wheremn is the overlap with thenth pattern andm̄n is the
time average ofmn :

mn[N21(
i 51

N

j i
nsi ,

m̄n[E
0

t

dt8wt~ t2t8!mn8

with mn8 being the overlap at timet8. The overlap of the
order unity,mm'1, which implies that the state of the ne
work is strongly correlated with one of the embedded p
terns~i.e., with themth one!, describes the state with station
ary memory. On the other hand, in the state without mem
all the average overlaps are inappreciable and of the orde
N21/2. Thus the no-memory state is characterized bymn

'0 for all n (51, . . . ,p), implying that the system is no
correlated with any embedded pattern.

At zero temperature it has been shown that the sys
which initially learns the first embedded pattern might tran
to the second one after a finite-time durationt0 if l exceeds
a certain critical valuelc @4#. The transition occurs succes
f

f
e

y

t-

t-

y
of

m
it

sively to the next pattern aftert0 and finally constitutes a
cycle of temporal association. The time intervalt0 and the
critical valuelc depend on the specific form of the memo
function wt(t). Here, for convenience, we consider th
simple casewt(t)5d(t2t), which is expected to display
temporal association for all values ofl larger thanlc @4,6#.
As the storagea is increased from zero, fluctuations in th
local fields produced by nonzeroa has been suggested t
induce transitions even for smallerl, thus lowering the criti-
cal valuelc . At high temperatures, on the other hand, lar
fluctuations tend to mix the patterns and to yield rand
overlaps among the patterns, which deteriorates the cap
ity of the network to recall the proper patterns. According
temporal association is suppressed and the critical valuelc is
expected to increase witha.

To investigate these properties in detail, we have p
formed numerical simulations of the system at various te
peratures and storage values. The behavior of the overlapmn

obtained from the simulations of the system withN51000
and p5q510 is displayed in Fig. 1. At zero temperatu
(T50) the characteristics of temporal association are sho
in Figs. 1~a! and 1~b!: When l is less thanlc ('0.78 for
a50.01) @11#, the system stays in the initial patternjn51

indefinitely, yielding a stationary state, while forl.lc ,
transitions to the next patterns occur successively with
time intervalt0 equal tot. At nonzero but low temperatures
the state determined by the local fields$hi% for 0,t,t will
have an overlap with the patternjn51 less than unity and
nonzero overlaps with other patterns, i.e.,mnÞ0 even for
nÞ1. Accordingly, small fluctuations tend to induce the tra
sition even at the value ofl less than unity, as shown in
Figs. 1~c! and 1~d!. In other words, the critical valuelc in
general decreases as the temperatureT is raised from zero.
At higher temperatures, however, all the overlaps disp
large fluctuations@compare Fig. 1~e! with Fig. 1~c!#. Such
large fluctuations suppress temporal association in the
tem, making it necessary to have a large value ofl for tem-
poral association. It is thus concluded that the critical va
lc at first decreases with temperature but eventually
creases as the temperature is raised further.

To determine the phase boundaries between the state
stationary memory such as~c! and that with temporal asso
ciation such as~d!, we use the following criterion: The sys
tem is considered to have stationary memory if the mem
of a single pattern is dominant during the simulation tim
i.e., if I m.(nÞmI n . Here I m is the number of time steps in
the simulation during whichmm is the maximum. Similarly,
the fluctuating state without memory is distinguished acco
ing to whether the maximum overlap is smaller than the s
of the next two overlaps during more than half the simulat
time.

Figure 2 presents the schematic phase boundaries in
l-T plane, separating the stationary-memory state~SM!, the
temporal-association state~TA!, and the no-memory stat
~NM!, for several values ofa. For small values ofl anda,
the system displays stationary memory of a single patter
low temperatures. As the temperatureT is raised, however,
overlaps with other patterns become increased, induc
transitions into other patterns. Accordingly, the system d
plays temporal association. At even higher temperatu
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FIG. 1. Behavior of the overlapmm (m51, . . . ,p) in the asymmetric Hopfield model with the memory functionw(t)5d(t2t). The
parameter values used in the simulations areN51000,p510, and~a! T50, l50.7; ~b! T50, l51.0; ~c! T50.3, l50.1; ~d! T50.3, l
50.3; ~e! T50.7,l50.3. Timet has been measured in units of the Monte Carlo steps per neuron~MCS! and the time delayt set equal to
100 MCS.
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however, random overlaps destroy the memory in the s
tem. Thus the network, starting from the stationary-mem
state at low temperatures, first makes a transition to
temporal-association state and then to the no-memory s
as the temperature is increased. Note that the two bound
separating the temporal-association state from the station
memory one and from the no-memory one do not mee
l50. This leads to a narrow interval ofT in which the net-
work undergoes double transitions asl is increased from
zero, from the stationary-memory state to the no-mem
one and subsequently to the temporal-association state.
also of interest to observe the shift of the boundaries with
storagea: With increasinga, the stationary memory is sup
pressed at low temperatures, which reflects that fluctuat
in the local fields tend to induce transitions between patte
At high temperatures, on the other hand, large fluctuati
tend to mix all the patterns and to give random overlaps, t
suppressing temporal association. Further, Fig. 2 shows
the storage capacityac changes withl. Namely, the bound-
ary at T50 between the stationary-memory state and
temporal-association one, which gives the critical valuelc
for given a, can be considered to give the storage capa
s-
y
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ac for given l: ac50.1, 0.05, 0.01, and 0.001 forl
'0.42, 0.53, 0.78, and 0.95, respectively. In this way i
revealed that asl is raised from zero, the storage capacityac
decreases markedly from 0.138, the value in the symme
network (l50) @2#.

Here the finite-size effects have been checked for e
value of a, and systems of sizes which appear to disp
asymptotic behavior have been used in obtaining Fig. 2.
typical behavior of the system according to the system siz
displayed in Fig. 3, fora50.01 andN5500, 1000, 2000,
and 4000. It is observed that the system apparently rea
the asymptotic regime forN52000. Even the system of siz
N51000 already displays negligible finite-size effects exc
at very low temperatures.

III. ASYMMETRIC DYNAMIC MODEL

The dynamic model employs continuous-time dynam
which is neither totally synchronous nor totally asynch
nous, and is more realistic than the Hopfield models in v
of the biological situation. At the price of this, however, t
model lacks the Hamiltonian which governs the equilibriu
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state and, accordingly, the methods of equilibrium statist
mechanics are not applicable. Instead, the dynamic mod
neural networks is described by the master equation for
joint probability P($si%,t;$si8%,t2td) that the system is in
state$si8% at timet2td and in state$si% at timet, wheretd is
the time delay in the signal propagation. The resulting ma
equation leads the evolution equations for physical quant
to assume the form of appropriate differential-differen
equations@10#. For example, the activity of thekth neuron,
sk(t)[^sk& t[($si %,$si8%skP($si%,t;$si8%,t2td), satisfies the

equation

1

b

dsk~ t !

dt
5S 1

2
2aD2S 1

2
1aDsk~ t !

1
1

2
^~12sk!tanhbhk~ t21!& t , ~5!

wherea and b are the ratios of the refractory period to th
action potential duration and of the delay time to the refr
tory period, respectively, and timet has been rescaled i
units of the delay timetd .

The simple case of the symmetric couplings both at z
and at finite storages has been shown to display desir
features similar to those of the Hopfield model@10,12#:
There exists the critical temperatureTc(a) depending on the
storagea, below which there emerges macroscopic coh
ence between the network state and one of the embe
patterns. In particular, the storage capacityac for memory
retrieval at zero temperature is given by that of the Hopfi
model divided by (11a2). The phase diagram drawn in th
(T,a,a) space exhibits a variety of interesting behavio
depending on the value of the parameters. For sufficie
small a and a less than 1/2, the network undergoes tw
successive transitions as the temperature is lowered, whe
for largea, only a single transition occurs regardless of t
value of a. The casea51/2 deserves particular attentio
since the memory capacity in this case takes its maxim
value at zero temperature and the critical temperature
memory retrieval reaches the highest value at zero stora

We now introduce the asymmetric Hebb rule, as in
preceding section:

FIG. 2. Schematic phase boundaries of the asymmetric Hop
model with noise for various values of the storagea. The size of
the network is N510 000, 4000, 1000, and 1500 fora
50.001, 0.01, 0.05, and 0.1, respectively. Each line represent
least-square fit of the corresponding data, the typical error ba
which is about the size of the symbol.
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N (
m51

p

j i
mj j

m1
l

N (
m51

q

j i
m11j j

m , iÞ j , ~6!

where a cyclic sequence is again incorporated by set
j i

q115j i
1 . We consider the caseq5p, and make use of the

mean-field approximation in Eq.~5!, which is expected to be
correct for the infinite-range interaction. Equation~5! then
reads

1

b

dsk~ t !

dt
5S 1

2
2aD2S 1

2
1aDsk~ t !1

1

2
@12sk~ t !#

3tanhH b (
n51

p

@jk
nmn~ t21!

1ljk
n11mn~ t2 t̃ !#J , ~7!

where theorder parameter mn(t)[N21( ij i
ns i(t) describes

the average overlap between the network and thenth embed-
ded pattern, andt̃ denotes the time delay of the asymmet
coupling ~relative to that of the symmetric one,td). Multi-
plying Eq. ~7! by N21j i

m and summing overi, we obtain the
equation for the order parametermm :

1

b

dmm~ t !

dt
52S 1

2
1aDmm~ t !1

1

2N (
i

j i
m@12s i~ t !#

3tanhH b (
n51

p

@j i
nmn~ t21!

1lj i
n11mn~ t2 t̃ !#J , ~8!

which, together with Eq.~7!, governs the time evolution o
the network.

It is obvious that Eq.~8! possesses the trivial solutio
mm(t)50 for all m, corresponding to the disordered sta
i.e., the state without memory. The stability of this trivi
solution can easily be examined by linearizing the equati
and it turns out that the null solution is asymptotically stab
at temperatures higher thanT2[4a/(112a)2. Note thatT2

ld

he
of

FIG. 3. Phase boundaries of the asymmetric Hopfield model
a50.01 and forN5500, 1000, 2000, and 4000. Even the syste
of size N51000 already displays negligible finite-size effects e
cept at very low temperatures.
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is independent ofl and in particular the same as the val
for the symmetric coupling (l50) obtained in Ref.@10#.

For T,T2 , on the other hand, Eqs.~7! and ~8! allow
nontrivial solutions. We investigate the Mattis solutio
which is fully correlated with just one of the learned patter
i.e.,

mm5mdm,1 . ~9!

In this Mattis solutionm is given by the nonzero solution o

m5
4a

112aKK j1tanh@b~j11lj2!m#

112a1tanh@b~j11lj2!m#
LL , ~10!

where^^•••&& stands for the average taken with respect
the distribution of$j i

m%. Here we have replaced the avera
over the neurons by that over the distribution of the mem
ries: N21( i f (j i)5^^ f (j)&&. This self-averaging property
should be valid forN→` and fixedp, if the distribution of
the patterns is essentially random. For simplicity,j i

m’s are
assumed to take the values11 and21 with equal probabili-

FIG. 4. Behavior of the functiong(x) for givenl, together with
the straight liney5x, ~a! for a.ac and~b! for a,ac . The behav-
ior at given temperatureT betweenT1(l51) and T1(l52) is
shown in ~c! for various values ofl, indicating thatT1 is an in-
creasing function ofl.
,

o

-

ties. It is then straightforward to perform the average in E
~10!, which yields

m5
2a tanh@b~11l!m#

~112a!22tanh2@b~11l!m#

1
2a tanh@b~12l!m#

~112a!22tanh2@b~12l!m#
[g~m!. ~11!

Figure 4 shows two kinds of solution of Eq.~11! accord-
ing to the value ofa: ~a! a.ac[(A321)/2 and ~b! a
,ac . Here ac is determined by the nonlinear equatio
g9(0)50 and does not depend onl. For a.ac , the Mattis
solution exists only at temperatures lower thanT2 , and dis-
appears continuously as the temperatureT is raised toT2 .
For a,ac , the Mattis solution still exists at low tempera
tures (T,T2); at intermediate temperatures (T2,T,T1),
on the other hand, the null solution and the Mattis one co
ist with different basins of attraction. AsT is increased fur-
ther, the average overlapm in general decreases and vanish
abruptly atT5T1 . Thus there appears a discontinuous tra
sition at temperatureT1 , which is determined by the couple
equationsg(x* )5x* and g8(x* )51. At given temperature
the behavior ofg(x) for various values ofl is displayed in
Fig. 4~c!, which indicates thatT1 is an increasing function o
l. In particular, it is obvious that Fig. 4~c! exhibits the be-
havior at temperatures betweenT1(l51) and T1(l52).
Accordingly, for a,ac the network is expected to exhib
successive transitions asT is lowered: a discontinuous tran
sition at T1(l) from the null state to the mixed state fo
lowed by a continuous transition atT2 to the ordered state.

With varying l, we have examined the basins of attra
tion, and obtain Fig. 5, which displays two surfaces,T5T2
and T5T1 , meeting at the straight linea5ac . Regions A
above the two surfaces, B below the two, and C between
two correspond to the existence of the null solution, of t
Mattis solution, and of the mixed state, respective
Whereas region B is separated from A or from C via t
continuous transition surfaceT5T2 , the boundary between
A and C, existing only fora,ac , constitutes the discontinu
ous transition surfaceT5T1 . In the limit a→0, both sur-
faces approach the lineT50 but with different slopes. On

FIG. 5. Existence of the solution in the (T,a,l) space. A, B,
and C denote the regions of the null solution, the Mattis soluti
and the mixed-state solution, respectively, whereas PQ repres
the tricritical line.



d

d
inc
in
lin
n

B
,

y
e

ow

ve
e

on
or

tri
an
a
ta
s
ed

b-

ics

s-
ith
od
l-

d

qual
he
tart-

e
o as
ld

ic
ve
lete

the

a

7766 PRE 58M. Y. CHOI, JIHYUN CHOI, AND KIBEOM PARK
line PQ, which is given bya5ac and T54ac /(112ac)
2,

the two surfaces meet. Accordingly, PQ may be regarde
a tricritical line.

Note that these solutions existing in various regions
not necessarily correspond to the physical solutions s
their stability is not guaranteed. It is known that they are
general stable in the absence of the asymmetric coup
(l50) @10#. To examine the stability of the Mattis solutio
in the presence of the asymmetric coupling (lÞ0), we con-
sider a small deviation from the Mattis solution in regions
and C and putmm(t)5mm1dmm(t) @and correspondingly
s i(t)5s i1ds i(t)#. Substituting into Eqs.~7! and ~8!, to-
gether withdmm;egmt, leads to the stability determined b
the exponentgm . Here the stable Mattis solution should b
accompanied by the exponentsgm with negative real parts
for all m51, . . . ,p. However, the resultingp coupled
differential-difference equations are too complicated to all
general analysis. We thus consider the simple casegm5g,
and compute the surface confining the region where the o
lap m is finite andg has a negative real part in the long tim
limit.

The obtained boundary surface in the (T,a,l) space is
displayed in Fig. 6. In the symmetric case (l50), the sta-
bility boundary is expected to coincide with the transiti
line T2 @10#. Figure 6 shows that the stability boundary f
l50, given by the locus of the surface on theT-a plane,
indeed agrees well with the continuous transition lineT2
represented by the thick solid line. For general values ofl,
on the other hand, it should be noted that due to the res
tion gm5g, the obtained boundary in Fig. 6 comprises
upper bound for the true phase boundary. We thus reg
Fig. 6 as the approximate phase diagram for the Mattis s
in the (T,a,l) space. Nevertheless it shows clearly that al
increases, the Mattis state becomes unstable and replac
the disordered state or by the nonstationary state.

The above analytic investigation is limited to the equili
rium ~fixed-point! behavior in the thermodynamic limit with
finite p. Unlike the symmetric network, however, the asym
metric one is expected to exhibit a variety of dynam
which may not be obtained via the analytic~equilibrium!
analysis. In addition, the zero-storage limita[p/N→0 is
far from practical in real networks of finite sizes. To inve
tigate the dynamic behavior of the asymmetric network w
finite storage capacity, we thus resort to numerical meth
and perform simulations of the coupled differentia
difference equations~7! and~8!. The solutions of the coupled
equations and the corresponding phases are investigate
various values of the parameters,T, l, anda, while for con-

FIG. 6. Upper bound of the phase boundary separating the M
tis state in the (T,a,l) space. The thick solid line on thel50
plane represents the continuous transition lineT2 .
as
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venienceb is set equal to unity. The relative time delayt̃ is
observed not to affect the asymptotic behavior and set e
to unity throughout the simulations. Figure 7 displays t
typical behaviors of the average overlaps in the system s
ing from the initial patternjn51: Here the transition from the
stationary-memory state at lowT and for smalll @shown in
~a!# to either the temporal-association state@shown in ~b!#
upon increasingl or to the no-memory state@shown in~c!#
upon raisingT can be observed. It is of interest that th
average overlap in the no-memory state decays to zer
shown in~c!; this is in contrast with the asymmetric Hopfie
model, displaying large fluctuations.

In order to describe the ability of the asymmetric dynam
model to recall a learned pattern or a full cycle, we ha
performed extensive simulations and obtained the comp
phase diagrams for various values ofa, which are displayed
in Fig. 8. Each phase diagram consists of two surfaces in

t-

FIG. 7. Behavior of the overlapmm (m51, . . . ,p) in the asym-
metric dynamic model for the parametersN51000,p510, and~a!
T50.2,l50.2; ~b! T50.2,l50.8; ~c! T50.6,l50.2. Timet has
been measured in units of one-tenth of the delay time, 0.1td .
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(T,a,l) space: one separating the stationary-memory~SA!
state and the other the no-memory~NM! state from the
temporal-association~TA! state, respectively. Here the sy
tem has been considered to be in the stationary-memory
and in the no-memory state ifmm.(nÞmmn for a single
memorym and if mn5O(N21/2) for all n51,2, . . . ,p, re-
spectively. As in the asymmetric Hopfield model, there a
exists a very narrow interval ofT in which the system un-
dergoes double transitions asl is increased from zero, from
the stationary-memory state to the no-memory one and
sequently to the temporal-association state, although the
memory state occupies only a tiny region of smalll just
above zero and cannot be observed clearly in Fig. 8. Figu
shows that the contours of constantl represented by the
dashed lines on the bottom plane lead to the maximum
ues ofT arounda51/2. Accordingly, the optimal memory
capability is reached when the refractory period and the
tion potential duration are of the same order, regardles
the strength of the asymmetric coupling. It can also be
served that the region of the stationary-memory state shr

FIG. 8. Phase diagram of the asymmetric dynamic model in
(T,a,l) space, for ~a! a50.001, N55000; ~b! a50.01, N
52000; ~c! a50.05, N5600. The dashed lines on the botto
plane represent the contours of constantl.
ate

o

b-
o-

8

l-

c-
of
-

ks

with the storagea, which plays a role similar to that of the
temperatureT. While for small a the temporal association
becomes optimal around the temperatureT2 @see~a! and~b!#,
~c! reveals the drastic deterioration of the memory capabi
as a is increased toward the storage capacityac @,ac(l
50)'0.138/(11a2)#.

The simulation result fora50.002 and the analytic one
(a→0) are compared in Fig. 9, which shows good agr
ment with each other except for smalla and highT. Since the
analytic result gives only an upper bound for the prec
phase diagram in the limita→0, the true boundary of the
Mattis state fora50 is expected to be located between t
two surfaces in Fig. 9.

IV. SUMMARY

The characteristics of temporal association in neural n
works have been investigated both analytically and num
cally, with emphasis on the effects of finite storage and te
peratures. We have first considered the asymmetric Hopfi
model in the presence of noise, and presented several s
lation results. The phase diagram has been obtained in
plane of the temperature and the degree of asymmetry,
various storage values. We have then turned to the dyna
model, which has also been made capable of temporal a
ciation by introducing asymmetric couplings in a similar w
to the Hopfield model. In the dynamic model, the ratioa of
the refractory period to the action potential duration is a r
evant parameter, in addition to the temperature and the
gree of asymmetry, and the phase diagram in the corresp
ing three-dimensional parameter space has been obtaine
stability analysis in the zero storage limit. We have furth
performed extensive numerical simulations, which ha
yielded the phase diagram for various~nonzero! storage val-
ues. It has been observed that the memory capability of
network reaches its maximum arounda51/2, regardless of
the storage or the strength of the asymmetric coupling. I
of interest to note that the refractory period and the act
potential duration are indeed comparable to each other in
real biological system, which is optimal according to o
results.
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FIG. 9. Comparison of the analytic results obtained in the lim
a→0 ~solid-line surface! and simulations performed fora50.002
~dotted-line surface!. The thick solid line on thel50 plane again
represents the continuous phase-transition boundary.
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